Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37512308

RESUMO

Ventilator-associated pneumonia is one of the most frequently encountered hospital infections and is an essential issue in the healthcare field. It is usually linked to a high mortality rate and prolonged hospitalization time. There is a lack of treatment, so alternative solutions must be continuously sought. The endotracheal tube is an indwelling device that is a significant culprit for ventilator-associated pneumonia because its surface can be colonized by different types of pathogens, which generate a multispecies biofilm. In the paper, we discuss the definition of ventilator-associated pneumonia, the economic burdens, and its outcomes. Then, we present the latest technological solutions for endotracheal tube surfaces, such as active antimicrobial coatings, passive coatings, and combinatorial methods, with examples from the literature. We end our analysis by identifying the gaps existing in the present research and investigating future possibilities that can decrease ventilator-associated pneumonia cases and improve patient comfort during treatment.

2.
Materials (Basel) ; 16(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444822

RESUMO

The most critical shortcoming of magnesium alloys from the point of view of medical devices is the high corrosion rate, which is not well-correlated with clinical needs. It is well- known that rapid degradation occurs when an implant made of Mg-based alloys is placed inside the human body. Consequently, the implant loses its mechanical properties and failure can occur even if it is not completely degraded. The corrosion products that appear after Mg-based alloy degradation, such as H2 and OH- can have an essential role in decreasing biocompatibility due to the H2 accumulation process in the tissues near the implant. In order to control the degradation process of the Mg-based alloys, different coatings could be applied. The aim of the current paper is to evaluate the effect of fluoride coatings on the corrosion behavior of magnesium alloys from the system Mg-Zn-Ca-Mn potentially used for orthopedic trauma implants. The main functional properties required for the magnesium alloys to be used as implant materials, such as surface properties and corrosion behavior, were studied before and after surface modifications by fluoride conversion, with and without preliminary sandblasting, of two magnesium alloys from the system Mg-Zn-Ca-Mn. The experimental results showed that chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental magnesium alloys from the Mg-Zn-Ca-Mn system. Also, high surface free energy values obtained for the alloys treated with hydrofluoric acid correlated with wettability lead to the conclusion that there is an increased chance for biological factor adsorption and cell proliferation. Chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental Mg-Zn-Ca-Mn alloys.

3.
Healthcare (Basel) ; 11(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673625

RESUMO

Epidermoid cysts are most often benign cystic lesions, with uterine cervical localisation being very unusual. We present the case of a 52-year-old female patient diagnosed with an epidermoid cyst at the level of the uterine cervix. A bioptic and haemostatic uterine curettage was performed, followed by total hysterectomy with bilateral adnexectomy. The histopathologic analysis and immunohistochemical essay of the resection specimens confirmed the cervical epidermoid cyst. The presence of high-risk HPV (human papillomavirus) was only seen in the cervical mucosa. The exact etiopathogenesis is unknown, but postpartum cell implantation of reminiscent embryonic tissue can be involved in the development of these lesions.

4.
Materials (Basel) ; 15(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500191

RESUMO

Additive manufacturing (AM) is an important technology that led to a high evolution in the manufacture of personalized implants adapted to the anatomical requirements of patients. Due to a worldwide graft shortage, synthetic scaffolds must be developed. Regarding this aspect, biodegradable materials such as magnesium and its alloys are a possible solution because the second surgery for implant removal is eliminated. Magnesium (Mg) exhibits mechanical properties, which are similar to human bone, biodegradability in human fluids, high biocompatibility, and increased ability to stimulate new bone formation. A current research trend consists of Mg-based scaffold design and manufacture using AM technologies. This review presents the importance of biodegradable implants in treating bone defects, the most used AM methods to produce Mg scaffolds based on powder metallurgy, AM-manufactured implants properties, and in vitro and in vivo analysis. Scaffold properties such as biodegradation, densification, mechanical properties, microstructure, and biocompatibility are presented with examples extracted from the recent literature. The challenges for AM-produced Mg implants by taking into account the available literature are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...